

Automation, Robotics and
Simulation Division

Intelligent Systems Branch (ER2)

David Overland

Integration of Advanced Life Support Control Systems

David Overland

NASA Johnson Space Center

Dr. Karlene Hoo

Texas Tech University

Marvin Ciskowski

Hamilton Standard

Automation, Robotics and Simulation Division	
Intelligent Systems Branch (ER2)	David Overland

Integrated Testing

- The development of stand-alone systems is relatively well understood
- When you put systems together, interesting and unpredictable things happen
 - Specifically, the integrated system behaves differently than the standalone systems behave separately
- When we have done this before, actually integrating these systems has driven out requirements and identified technology gaps in the ALS program
- Based on that experience, we have identified control system architecture and integration as a critical technology gap
- AIM proposed an integrated test to explore the design constraints and integration requirements of control systems

Automation, Robotics and Simulation Division	
Intelligent Systems Branch (ER2)	David Overland

Test Objectives

- AIM Test was designed
 - To stress interfaces
 - To identify information flows
 - To explore operations concepts and dependencies
 - To investigate architecture capabilities and requirements
- Intent is also to determine what types of data and autonomous capabilities will be required by crew, vehicle and ground control during complex mission scenarios
 - What decisions must be made, where are they made, what information is needed to make those decisions, how does the information get there, and how reliable is the information
 - These need to be determined to identify whether infrastructure and architecture can support such capabilities

Automation, Robotics and Simulation Division	
Intelligent Systems Branch (ER2)	David Overland

Test Components

- Controls Investigation
 - WRS preprocessor systems with independent control systems for each reactor
 - Aerobic bioreactor
 - Anoxic bioreactor
- ARS simulation
- Scenario development and Task analysis
 - Mapping command and data flows to capabilities
- Narrative Integration

Automation, Robotics and Simulation Division	
Intelligent Systems Branch (ER2)	David Overland

Controls Investigation

- The two bioreactors "stand in" for any two interdependent systems
 - e.g. ARS and WRS
 - Flight systems are developed independently
 - Separate System Requirements Specifications
 - Interfaces are defined and controlled
 - Separate subcontractor organizations
 - Developed at different times in the program
- Question:
 - What requirements must be levied on each system to enable integration of the control systems?

Automation, Robotics and	
Simulation Division	
Intelligent Systems Branch (ER2)	David Overland

Controls Development Process

- Three prerequisites are required to develop a process control system
 - Process must be steady-state stable
 - Process must be controllable
 - i.e. there must be control (dependent) parameters and manipulated (independent) parameters
 - Process must be observable
 - i.e. there must be observable parameters that correspond to the controlled parameters

Automation, Robotics and Simulation Division	
Intelligent Systems Branch (FR2)	David Overland

Controls Models

- There are also three types of models/analysis required for process control development
 - Stochiometric model
 - Equilibrium model
 - Control-relevant model
 - Dependent on optimization criteria
- These models are *necessary* to design a controllable system

Automation, Robotics and Simulation Division	
Intelligent Systems Branch (ER2)	David Overland

Lessons Learned from Integrated Testing

Lesson 1 is that systems must be designed for controllability

- *Control* in this context means bringing the process back into equilibrium in the desired optimization range when the process is perturbed by input or environmental variations
- Controllability is design sensitive
 - Therefore the control design precedes the hardware design of the system
 - Controllability and observability dictate the sensor selection and placement
- This is in contrast to spacecraft avionics design, where software requirements are derived *from* the hardware design

Automation, Robotics and Simulation Division	
Intelligent Systems Branch (ER2)	David Overland

Control (A) + Control (B) \neq Control (A+B)

Lesson 2 is that

- Controllability is not additive for interdependent systems
 - Analysis and Design must encompass entire system
 - Analysis of system components provides no information about system controllability

Automation, Robotics and Simulation Division	
Intelligent Systems	David Overland

Interdependence Causes Complexity

Lesson 3 is that the complexity of integrating the bioreactor control systems is not just an attribute of the biology, but also of the interdependence of the processes

- *Process* in this context refers to a transformation of something to something else
 - Processes have rates, control variables and dependent variables
- *Interdependence* means that changes in the parameters of one system necessitate changes in the controls of another system, either
 - automatically (as in the case of the bioreactors) or
 - by intent (a manual or autonomous command)

Automation, Robotics and Simulation Division	
Intelligent Systems Branch (ER2)	David Overland

Conclusion

- These lessons can be true of autonomous and automated systems
- The possibility of instability is one of the drivers to disallow automation of on-board systems
 - System dependencies are often discovered *in-situ*, after deployment
 - Automation can enable those dependencies
 - Autonomy and automation added after subsystem design can also generate dependencies between subsystems that were designed to be independent

Automation, Robotics and Simulation Division	
Intelligent Systems Branch (ER2)	David Overland

Importance

- The Constellation Program has autonomy and automation requirements different from previous programs
- The *design* of such systems requires risk mitigation and engineering strategies different from previous programs
 - This is not the same as developing autonomy and automation technology
- Subsystem requirements must be derived from integrated design
 - Development of subsystem specifications in contrast to subsystem functional requirements and constraints